
RETAILERS PLEASE DISPLAY
UNTIL JULY 31, 2007

 JDJ.SYS-CON.COM VOL.12 ISSUE:5

No. 1 i-Technology Magazine in the World

JDJ.SYS-CON.COM VOL.12 ISSUE:5

No. 1 i-Technology Magazine in the World

 JDJ.SYS-CON.COM

T H E W O R L D ’ S L E A D I N G i - T E C H N O L O G Y M A G A Z I N E J D J . S Y S - C O N . C O M

PLUS...
Evaluating Options for
Persisting Java Objects

Flow Analysis:
Static Analysis on Steroids

INTELLIGENT GUIs SHOULD REQUIRE NO THOUGHT TO OPERATE PAGE 3

SEE PAGES 25
and 32

Browser Wars and
Swing on the Desktop

www.SOAWorld2007.com

3-DAY EVENT!

PLUS

Join Altova

at JavaOne,

San Francisco

Booth #716

Take off with the Altova MissionKit, and discover
the secret to savings on top software tools.

Spied in the Altova MissionKit 2007:
� The world’s leading XML development tools (XMLSpy, MapForce, StyleVision, etc.)

� Plus application design, data management, and modeling options for software architects

The Altova MissionKit 2007 bundles Altova’s intelligent application development, data
management, and modeling tools at 50% off their regular prices. Available in a variety of

configurations tailored to the needs of software architects and XML developers, the Altova
MissionKit delivers the highest functionality and best product value. It’s your first-class ticket

to the power, speed, and simplicity of Altova’s award-winning product line. Save a bundle!

Download the Altova MissionKit 2007 today: www.altova.com

Gear up for
development excellence

Altova® MissionKit™ 2007 – Intelligent tools for XML developers and software architects.

MissionKit_JDJ.qxp 4/12/2007 1:07 PM Page 1

n Bernard J. Baar’s book “A Cognitive
Theory of Consciousness,” he describes
the brain as having a single conscious
area that can be occupied by one

thought at a time. The unconscious part of
the brain stores memories and experiences
and, like the conscious brain, is capable of
performing tasks; however, it does so auto-
matically, unlike the conscious area that re-
quires the intervention of the “self.” The first
time we are given a new input, sensation, or
experience to deal with, the conscious brain
is responsible for analyzing it, comparing
it to something that has occurred before,
and dealing with the action accordingly. Re-
peated exposure to the same input drives the
response into the uncon-
scious area of the mind,
so the next time the same
experience is encountered,
an automatic reply can be
recalled without requiring
conscious intervention.
 An example of this is
driving a car; an extremely
complex function to
perform that deals with
multiple inputs – many
different feedback loops to
control speed, direction,
and so forth. Only once
you have mastered how to control the me-
chanics of a car, via repetition and practice,
can you begin to drive it around using un-
conscious thought and start to concentrate
on inputs such as road signs, other drivers,
and assorted day-to-day driving hazards. A
very real problem exists that when driving
the same route over and over, what should
be a conscious thought process becomes
unconscious, leading to more traffic acci-
dents occurring in your own neighbourhood
on familiar roads than, ironically, far from
home where conscious thought needs to
be engaged. The fact that the brain can only
single task can be exacerbated by functions
such as talking on the phone while driving;
advanced driving schools recognize this
when they teach better road skills by making
drivers repeat to themselves everything they
are seeing as they drive, helping to ensure
that it’s the conscious and not unconscious
brain behind the wheel.

 This model of how the brain performs
tasks causes problems for GUI designers in
two ways: the wrong consciousness is active
when input or response is required, and
too much conscious thought slows down
the user, creating slow and costly context
switches.
 An example of where things break down
is with dialogs that pop up and require a
response. From a design point they’re the
equivalent of a road user driving along hap-
pily in an unconscious mode, thinking about
what they’re going to do at their destina-
tion, when a deer runs in front of the car.
Immediately, conscious thought is required
to create a response, and as the driver cre-

ates the correct response, their
locus of attention is changed
from their day dreaming to the
more pressing situation at hand.
When you delete a file in Windows
Explorer it puts it in the recycle
bin asking if you to confirm you’re
sure. From here you can retrieve
it later if you want to. If you don’t
want to fill up the recycle bin you
can press Shift+Delete together
to do a “delete and don’t recycle”.
This too asks if you’re sure with a
“Yes/No” response, however the
problem is that because pressing

Yes to the modal dialog that follows delete
has become an automatic part of deletion
you don’t read the dialog, and don’t read and
process the Shift+Delete different, potentially
more severe with no recovery, question. The
problem is that conscious actions, through
repetition, can become unconscious, so each
time a user sees the dialog they will become
more accustomed to just pressing OK to
dismiss it, so that dealing with the “Are you
sure you want to delete?” just becomes an
automatic part of the delete action. For an
application that uses dialogs to grab the user’s
attention, which they have learned as part of
the normal operation, what then must it do to
really get the user woken up ? One such way
is to actually stop the user from proceeding,
a technique used by wizards, for example,
that disables the Finish button until enough
information has been completed. Again,

–continued on page 13

From the Desktop Java Editor

Intelligent GUIs
Should Require No

Thought to Operate
 Editorial Board
 Java EE Editor: Yakov Fain

 Desktop Java Editor: Joe Winchester

 Eclipse Editor: Bill Dudney

 Enterprise Editor: Ajit Sagar

 Java ME Editor: Michael Yuan

 Back Page Editor: Jason Bell

 Contributing Editor: Calvin Austin

 Contributing Editor: Rick Hightower

 Contributing Editor: Tilak Mitra

 Founding Editor: Sean Rhody

Production
 Associate Art Director: Tami Lima
 Executive Editor: Nancy Valentine
 Research Editor: Bahadir Karuv, PhD

To submit a proposal for an article, go to
http://jdj.sys-con.com/main/proposal.htm

Subscriptions
For subscriptions and requests for bulk orders, please send your

letters to Subscription Department:

888 303-5282
201 802-3012

 subscribe@sys-con.com

Cover Price: $5.99/issue. Domestic: $69.99/yr. (12 Issues)
Canada/Mexico: $99.99/yr. Overseas: $99.99/yr. (U.S. Banks or

Money Orders) Back Issues: $10/ea. International $15/ea.

Editorial Offices
SYS-CON Media, 577 Chestnut Ridge Rd., Woodcliff Lake, NJ 07677

Telephone: 201 802-3000 Fax: 201 782-9638

Java Developer’s Journal (ISSN#1087-6944) is published monthly

(12 times a year) for $69.99 by SYS-CON Publications, Inc.,
577 Chestnut Ridge Road, Woodcliff Lake, NJ 07677. Periodicals

postage rates are paid at Woodcliff Lake, NJ 07677 and additional
mailing offices. Postmaster: Send address changes to:
Java Developer’s Journal, SYS-CON Publications, Inc.,
577 Chestnut Ridge Road, Woodcliff Lake, NJ 07677.

©Copyright
Copyright © 2007 by SYS-CON Publications, Inc. All rights reserved. No

part of this publication may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including

photocopy or any information storage and retrieval system, without
written permission. For promotional reprints, contact reprint

coordinator Megan Mussa, megan@sys-con.com. SYS-CON Media
and SYS-CON Publications, Inc., reserve the right to revise, republish
and authorize its readers to use the articles submitted for publication.

Worldwide Newsstand Distribution

Curtis Circulation Company, New Milford, NJ

For List Rental Information:

Kevin Collopy: 845 731-2684, kevin.collopy@edithroman.com

Frank Cipolla: 845 731-3832, frank.cipolla@epostdirect.com

Newsstand Distribution Consultant

Brian J. Gregory/Gregory Associates/W.R.D.S.

732 607-9941, BJGAssociates@cs.com

 Java and Java-based marks are trademarks or registered

trademarks of Sun Microsystems, Inc., in the United States and
other countries. SYS-CON Publications, Inc., is independent of
Sun Microsystems, Inc. All brand and product names used on
these pages are trade names, service marks or trademarks of

their respective companies.

Joe Winchester is a

software developer

working on WebSphere

development tools

for IBM in Hursley, UK.

joewinchester@sys-con.com

Joe Winchester

I

3May 2007JDJ.SYS-CON.com

ILOG JViews 8.0, the newest release of the ILOG Java-based visualization

products, addresses all aspects of advanced visualization.

ILOG JViews 8.0 provides:

• Key visual components: diagrams, dashboards, maps, charts,

Gantt charts

• Advanced services: automatic graph layout, high-performance display

for large data sets

• Several deployment techniques, including desktop clients, Ajax-enhanced

Web applications, Eclipse’s Rich Client Platform (RCP) and portals

© 2007 – ILOG S.A. – ILOG, CPLEX and the ILOG logotype are registered trademarks, and all ILOG product names are trademarks of ILOG.

Why paint with your fingers?
Java visualization components for desktop and Ajax

• A proven track record in the most demanding industries:

IT, telecommunications, transportation, utilities, energy and defense

Paint your future with ILOG JViews 8.0.

Get your free ‘Ajax for Graphics-Intensive
Web Applications’ white paper at
ilog.com/jdj/ajax

Visit us at JavaOne 2007
in booth #420.

5May 2007JDJ.SYS-CON.com

MAY 2007 VOLUME:12 ISSUE:5

contents
JDJ Cover Story

JDJ (ISSN#1087-6944) is published monthly (12 times a year) for $69.99 by
SYS-CON Publications, Inc., 577 Chestnut Ridge Road, Woodcliff Lake, NJ 07677.
Periodicals postage rates are paid at Woodcliff Lake, NJ 07677 and additional
mailing offi ces. Postmaster: Send address changes to: JDJ, SYS-CON
Publications, Inc., 577 Chestnut Ridge Road, Woodcliff Lake, NJ 07677.

FROM THE EDITOR

Intelligent GUIs Should Require
No Thought to Operate
by Joe Winchester.................................3

VIEWPOINT

Never Mind the Quality,
Feel the Width!
by Nigel Cheshire.................................6

ANALYSIS

Flow Analysis:
Static Analysis on Steroids
How and why to add fl ow analysis to your existing testing
strategies
by Nada daVeiga..............................14

INSIDE LOOK

Browser Wars and Swing
on the Desktop
Is the WebRenderer Swing Edition a signifi cant development?
by Anthony Scotney..............................30

JSR WATCH

Getting Ready to Choose the Year’s Best
by Onno Kluyt.............................34

10

by Charles Lee

Feature

Evaluating Options for
Persisting Java Objects

by
Richard Conway 22

JDJ.SYS-CON.com6 May 2007

ever Mind the Quality, Feel
the Width” was the title of
a British TV sitcom in the
late 60’s (yes, I really am

that old), which has nothing to do
with Java software development. Or
does it?
 The more I talk to people about
the issue of Java software quality, the
more I am reminded of the name of
that seemingly ridiculous TV show.
It seems to me that however much
we talk about the need for qual-
ity in software development, it’s an
issue that takes
a backseat to
the “width” – by
which I mean
the number of
feature requests
that get crammed
into our develop-
ment projects.
 Many years
ago, I worked
for a company
called Data
General. Anyone
with more than
one or two gray hairs may remember
DG as a minicomputer manufacturer
(guess what – before Eclipse was an
open source IDE, it was the name of
a minicomputer made by DG). DG
finally passed away in 1999, when
what was left of it was acquired by
EMC Corporation, but many people
remember that back in the ‘80s, DG
had quite a reputation for innova-
tion, as captured in the 1981 book by
Tracy Kidder, Soul of a New Machine.
 Anyhow, the point of all this

reminiscing is to illustrate that,
back when I worked in the software
R&D group at DG, we took software
quality seriously. If we found a bug
in a released software application,
we’d run around like crazy until we
fixed it, and send out a patch (a real
patch, back in those days) to fix the
problem, pronto.
 Once I left DG in 1989, and
moved into the wacky world of
Windows/386, I was astonished at
how buggy released software could
be. That was my introduction to

the great qual-
ity/feature tradeoff
debate, and it’s
fascinating to me
that today, almost
20 years later, that
issue still exists.
 Joe Winchester
wrote a nice piece
about quality
versus features in
January’s JDJ; just
a single page, that
you could easily
have flipped past if

you weren’t looking for it, but good
stuff. Joe was mostly talking about
usability in his piece, but that’s just
as much a part of software quality as
bugginess. “It disheartens me,” he
said, “that the basic task of analyz-
ing, understanding, and tooling for
the user’s most simple scenarios
have been overtaken by an obses-
sion to cram as much functionality
as possible into the hardware.”

–continued on page 8

Viewpoint

Never Mind the Quality,
Feel the Width!

N

Nigel Cheshire is CEO of

Enerjy Software, a division of

Teamstudio Inc. He oversees

product strategy and has

been driving the company’s

growth since he founded it

in 1996. Prior to founding

Teamstudio, Inc., Nigel was

co-founder and principal of

Ives & Company, a CRM solu-

tions consultancy. He holds

a Bachelor of Science degree

in computer science from

the University of Teesside,

England.

nigel_cheshire@enerjy.com

Nigel Cheshire
Guest Editor

The more I talk to people about the issue
of Java software quality, the more I am

reminded of the name of that seemingly
ridiculous TV show”

“

“

President and CEO:

 Fuat Kircaali fuat@sys-con.com

President and COO:

 Carmen Gonzalez carmen@sys-con.com

Senior Vice President, Editorial and Events:

 Jeremy Geelan jeremy@sys-con.com

Advertising

Advertising Sales Director:

 Megan Mussa megan@sys-con.com

Associate Sales Manager:

Corinna Melcon corinna@sys-con.com

Events

Events Manager:

Lauren Orsi lauren@sys-con.com

Events Associate:

Sharmonique Shade sharmonique@sys-con.com

Editorial
Executive Editor:

 Nancy Valentine nancy@sys-con.com

Production

Lead Designer:

 Tami Lima tami@sys-con.com

Art Director:

 Alex Botero alex@sys-con.com

Associate Art Directors:

 Abraham Addo abraham@sys-con.com

 Louis F. Cuffari louis@sys-con.com

Web Services

Information Systems Consultant:

 Robert Diamond robert@sys-con.com

Web Designers:

 Stephen Kilmurray stephen@sys-con.com

 Richard Walter richard@sys-con.com

Accounting
Financial Analyst:

 Joan LaRose joan@sys-con.com

Accounts Payable:

 Betty White betty@sys-con.com

Customer Relations
Circulation Service Coordinator:

 Edna Earle Russell edna@sys-con.com

 Alicia Nolan alicia@sys-con.com

For Java developers, Caché offers a wealth of benefits.
When you embed Caché in your applications, they become more valuable. Caché dramatically
improves speed and scalability while decreasing hardware and administration requirements.
This innovative object database runs SQL queries faster than relational data-
bases. And with InterSystems’ JALAPEÑO™ technology for Java developers,
Caché eliminates object-relational mapping. Which means Caché doesn’t just
speed up the performance of applications, it also accelerates their development.
Caché is available for Unix, Linux, Windows, Mac OS X, and OpenVMS – and it is deployed
in more than 100,000 systems ranging from two to over 50,000 users. Embed our innova-
tions, enrich your applications.

Download a free, fully functional, no-time-limit copy of Caché, or request it on CD, at InterSystems.com/JavaOne2007P

© 2007 InterSystems Corporation. All rights reserved. InterSystems Caché is a registered trademark of InterSystems Corporation. 4-07 ValueCacheJa2 JDJ

Make Java
Applications

More
Valuable

Visit us in Booth #520 at JavaOne, May 8th - 11th, San Francisco, CA

ValCacheJa2 JDJ:Layout 1 4/12/07 6:52 PM Page 1

For Java developers, Caché offers a wealth of benefits.
When you embed Caché in your applications, they become more valuable. Caché dramatically
improves speed and scalability while decreasing hardware and administration requirements.
This innovative object database runs SQL queries faster than relational data-
bases. And with InterSystems’ JALAPEÑO™ technology for Java developers,
Caché eliminates object-relational mapping. Which means Caché doesn’t just
speed up the performance of applications, it also accelerates their development.
Caché is available for Unix, Linux, Windows, Mac OS X, and OpenVMS – and it is deployed
in more than 100,000 systems ranging from two to over 50,000 users. Embed our innova-
tions, enrich your applications.

Download a free, fully functional, no-time-limit copy of Caché, or request it on CD, at InterSystems.com/JavaOne2007P

© 2007 InterSystems Corporation. All rights reserved. InterSystems Caché is a registered trademark of InterSystems Corporation. 4-07 ValueCacheJa2 JDJ

Make Java
Applications

More
Valuable

Visit us in Booth #520 at JavaOne, May 8th - 11th, San Francisco, CA

ValCacheJa2 JDJ:Layout 1 4/12/07 6:52 PM Page 1

JDJ.SYS-CON.com8 May 2007

Viewpoint

–continued from page 6

 In my own company, we spend
a lot of time talking to people in
the software industry about qual-
ity issues. When I first started out
in this area, the biggest mistake I
made was assuming that people
at senior levels of management
would be deeply concerned about
the quality of the software being
written in their companies. How
wrong was I about that! It’s not
that people don’t care about soft-
ware quality; it’s that the people
who care, for the most part, are
developers, technical managers,
and architects, who don’t neces-
sarily have the power to bring the
necessary resources to bear on
solving the problem.
 And these people are frustrated
that they can’t do more to improve
quality practices, because at

higher levels in the organization,
or in the lines of business, there
are often low expectations of the
IT group’s performance.
 In February of this year, For-
rester Research published a paper
titled “Closing the CEO-CIO Gap”
and subtitled “CEOs and CIOs
Need Loftier Aspirations For IT’s
Contribution.” The report indi-
cates that CEO satisfaction with
the performance of IT in their firm
is high: 59% of CEOs surveyed
were “satisfied or very satisfied”
and 27% were “neutral.” On the
face of it, that seems good, until
you look at the CEO’s expectations
of the IT department: only 28% of
CEOs saw their IT departments
as proactive sources of business
innovation, and that number
dropped in smaller companies of
less than 1,000 employees.
 So it’s not surprising that
software quality isn’t seen as an
important boardroom issue – we
as an industry have trained our
customers to expect poor quality.
It’s a bit like asking me whether
I’m satisfied with the customer
service provided by my cell
phone network provider – well,
yes, I suppose so, but that’s only
because I know that all cell phone
network providers provide miser-
able customer service – so I never
call them.
 So, what can we do to turn this
situation around? We want to do
a better job, we really do – but
we are constantly under pressure
from the business to add more
features, and to do it all in less
time. So something has to give,
and that something is usually unit
testing, coding standards, us-
ability testing, refactoring to make
the application easier to maintain
– all those things we know we
should be doing but that we don’t
absolutely have to do to get the
application out the door.

 What we can do is start to
defend our projects against the
feature squeeze. Unless we start
to measure what we are spending
time on and the value that work
delivers to the project, we have no
leverage for pushing back when
the pressure is on to get more
features done in less time.
 In his paper “Controlled Chaos:
Living On The Edge” written back
in 1996, Ken Schwaber made the
distinction between defined pro-
cesses, which perform the same
way every time, and empirical
processes, which by their nature
are “chaotic and unrepeatable,
requiring constant measurement
and control through intelligent
monitoring.” And, you guessed
it – software development is an
empirical process, requiring con-
stant measurement and control
– otherwise, you get unpredictable
results.
 So, for those of us who care
about the quality issue, and think
we can do a better job, my recom-
mendation is to look into those
things that can be measured for
leverage: basic quality metrics
such as defect rates, unit test cov-
erage, and coding standards viola-
tions that, in conjunction with the
adoption of an agile methodol-
ogy such as Schwaber’s Scrum,
can help bring some order to the
chaos, and measure the impact
of trying to cram more features in
without flexing project timescales.
 Then, when the customer
comes by to say that he or she
needs the delivery date to move
forward by a month, but still
needs all the same features in the
finished product, we can have
some way of explaining why that
can’t happen unless something
else gives.
 After all, as an industry, we
should care about the quality as
well as the width.

So it’s not surprising that software quality isn’t seen as an
important boardroom issue – we as an industry have trained

our customers to expect poor quality”
“

NetBeans Ad; CMYK; live area: 7 7/8” x 10 1/4” + trim 1/4”NetBeans Ad; CMYK; live area: 7 7/8” x 10 1/4” + trim 1/4”NetBeans Ad; CMYK; live area: 7 7/8” x 10 1/4” + trim 1/4”

��
�����������������������������

��
���

��

������������
���

����������������������
��������������������������������������

����������������������������

�������������������������

���

��

��

�����������������������������

������������

NetBeans Ad; CMYK; live area: 7 7/8” x 10 1/4” + trim 1/4”

JDJ.SYS-CON.com10 May 2007

he hope of using any persistence framework is
absolute database independence. Database inde-
pendence means that you can focus on your job as
an application developer and not a DBA. How-

ever, no framework can fully make this claim. There’s
much more to running an application on a database
than simply issuing compatible SQL queries and getting
back the query results as expected. In my last article,
I detailed the process by which we converted existing
Enterprise Java Beans 2 (EJB2) Entity beans to Hiber-
nate Plain Old Java Objects (POJOs). This article is less
about our conversion process and more about the tools
and methods we chose to work with for the Hibernate
implementation and the backend databases (Oracle and
PostgreSQL) supported by Hyperic HQ.

Creating the Database Schema
 The relational database management system (RD-
BMS) is the foundation of any application. After all,
the point of having a persistence layer is to map
from the object model to the data model. The creation
of the database schema is the most common task, and
certainly there are plenty of point tools for various
types of RDBMS around. However, when your applica-
tion has to support more than one database type, it
makes sense to find a tool that can create the schema
regardless of database type. EJB2 provided no native
tools for such a task, so we built our own tool, plainly
named DBSetup. DBSetup is integrated with Ant and
can easily incorporate into our build or installer (both
of which rely on Ant). Its architecture is straightforward.
There are base classes called Table, Column, Index,
View, etc., that know how to generate the SQL com-
mands to create themselves. Most RDBMS have pro-
prietary extensions in their Data Definition Language
(DDL), which allow control over non-standard features
of the database system. If a RDBMS requires non-
standard commands, you just subclass the base class,
for example, the OracleTable class that can return the
correct SQL to create a table in Oracle. We defined
our own XML file format for the database schema, a
proprietary DDL, if you will. DBSetup generates the
sequence of database-specific commands in a single
script and piped it to the database to create the schema.

For example, here’s how we would define a table named
SUBJECT:

<table name=”SUBJECT”>

 <column name=”ID”

 default=”sequence-only”

 initial=”10001”

 primarykey=”true”

 required=”true”

 type=”INTEGER”/>

 <column name=”NAME”

 required=”true”

 size=”100”

 type=”VARCHAR2”/>

 <column name=”FIRST_NAME”

 required=”false”

 size=”100”

 type=”VARCHAR2”/>

 <column name=”LAST_NAME”

 required=”false”

 size=”100”

 type=”VARCHAR2”/>

 <column name=”FSYSTEM”

 type=”BOOLEAN”

 default=”FALSE”/>

 <index name=”SUBJECT_NAME_KEY”

 unique=”true”>

 <field ref=”NAME”/>

 </index>

</table>

 The syntax is self-explanatory. DBSetup worked fi ne for
us, but it meant that for any new database type that we want
to support, we’d have to analyze that database’s command
syntax and create subclasses as needed. As I had mentioned
in my last article, we went through supporting Oracle, Point-
base, Cloudscape, InstantDB, MySQL, and PostgreSQL data-
bases, and maintaining DBSetup to be compatible with all of
them was tedious. Besides, there was no association between
the tables being created here and the entity beans used by the
application.
 Hibernate provides a better tool for schema population,
hbm2ddl. It is also integrated with Ant. It lets you run the
task against your Hibernate mapping files (HBMs) and

Charles Lee is

vice president

of engineering

at Hyperic.

by Charles Lee

T

The Holy Grail of
Database Independence

Part 3: When your application has to support more than one database type,
it makes sense to fi nd a tool that can create the

schema regardless of database type

Feature

The Holy Grail of
Database Independence

JDJ.SYS-CON.com12 May 2007

generate the resulting data definition language (DDL) in a
file or to be exported directly into the database. Since we
chose not to use the annotation feature with Hibernate, we
hard-coded the HBM files. (Note that even if you were to use
annotations, you can still use Hibernate tools to create the
schema with your mapping.) We were able to convert our
DBSetup schema files to HBM files relatively fast due to the
structural similarities. Furthermore, we simplified our man-
ually maintained Hibernate configuration files by offloading
our defaults into an XSLT transformation process at build
time, so our HBM files can be as minimal as possible.
 Hibernate has classes that support various database dialects,
so all of a sudden we’ve gained the ability to create schemas for
a wide variety of databases without doing additional work our-
selves. Hibernate’s Web site lists the supported database types:
• Oracle 8i, 9i, 10g
• DB2 7.1, 7.2, 8.1
• Microsoft SQL Server 2000
• Sybase 12.5 (JConnect 5.5)
• MySQL 3.23, 4.0, 4.1, 5.0
• PostgreSQL 7.1.2, 7.2, 7.3, 7.4, 8.0, 8.1
• TimesTen 5.1, 6.0
• HypersonicSQL 1.61, 1.7.0, 1.7.2, 1.7.3, 1.8
• SAP DB 7.3
• InterSystems Cache’ 2007.1

 It’s good to know that we have options.

Populating the Data
 Most applications will require that some of the database
tables be initialized with data. HQ certainly does. The criteria for
our data population is the same as schema creation, it has to be
database-independent to support the various databases we sup-
port (or once supported). Hibernate doesn’t have any tools to
support this task. You can, of course, do this programmatically
through the application using Hibernate POJOs. As a devel-
oper, you wouldn’t have to use a separate tool or learn another
configuration format. However, this is not the most straightfor-
ward approach, you’ll probably write more code than you need.
There are tools available for such things. DbUnit Framework
will easily populate a database with an XML file containing the
initialization data. As for us, we had rolled our data initialization
functions into DBSetup.
 We began building HQ in 2001; there was nothing available
in open source. In fact, we even considered creating an open
source project for DBSetup, but decided that we didn’t have the
bandwidth to maintain the project in the open source world. We
defined the data in a database-independent format in XML files
that are separate from the aforementioned schema XML files,
and DBSetup would, of course, generate the SQL according to
the database column types. An insertion into the SUBJECT table
looks like this:

<table name=”EAM_SUBJECT”>

 <data id=”1”

 name=”admin”

 first_name=”System”

 last_name=”User”

 factive=”TRUE”/>

</table>

 Since we designed HQ as a conglomerate of subsys-
tems (authorization, measurement, control, etc.), we
organized the database initialization by having a schema
XML file and a data XML file for each of the subsystems.
After our conversion to Hibernate, we kept the data
population function of DBSetup and switched over to
hbm2ddl for the schema creation.

Upgrading the Database Schema
 Hyperic has some loyal customers, some of whom date
back to HQ 1.0 (thanks for sticking with us). However,
this means that we have to carry forward the customers’
data from some very different schemas from previous
versions. Upgrading the schema is an area that is the
least explored by existing tools, but represents one of
the greatest challenges that we faced. hbm2ddl has an
update option that attempts to create an upgrade script
that calculates the delta between what’s in the database
and the mapping files. However, there’s a fairly unsettling
warning in Hibernate’s tools documentation regarding
this operation:

(Do *not* use against production databases, no guaran-
tees at all that the proper delta can be generated or that
the underlying database can actually execute the needed
operations.)

 In our development, we found that changes to existing
columns and new indexes were not created by the update
option, not to mention that it didn’t support alteration
of the stored data as a part of the migration. Clearly, this
is inadequate for our purposes, since we have custom-
ers that rely on our software to manage their production
machines. We had previously developed another data-
base tool, also integrated with Ant, called DBUpgrader.
Unfortunately, DBUpgrader isn’t the most elegant of
solutions. It supports some basic database functions,
such as change column type, add new column, and
data insertion. It’s fairly cumbersome to maintain, be-
cause RDBMSes were different in their SQL variations,
particularly for alterations and index creation. So there
were a lot of direct SQL statements (we tag each state-
ment for a specific database type as needed). After creat-
ing a fresh schema through hbm2ddl from our Hibernate
mapping files, we saw that we had a lot of work to do to
migrate our previous schema versions to match what
Hibernate created. The process was pretty brute force,
we simply dumped the new database schema to a file
and used it as a reference to hand-code just about every
new table, column, index, constraint, as well as trans-
form and migrate the existing data and make column
type changes. Perhaps there will be a better tool some-
day, but we stuck to a tool that worked for us, as cumber-
some as it was (the entire upgrade XML file clocks in at
about 5000 lines).

Container Managed Relationships (CMR)
 Bidirectional CMRs are one of the very few instances
where one might consider EJB2 superior to Hibernate.
Take the simple example of the parent/child relationship.

Database

13May 2007JDJ.SYS-CON.com

In EJB2, you can set the association from either side of
the relationship. This means that you can
either do child.setParent(parent) or parent.getChil-
dren().add(child) in the application, and expect the
framework to update the appropriate entities and
automatically persist the foreign key relationship to
the database. However, this is not the case with Hi-
bernate. Hibernate doesn’t have “true” bidirectional
association. The issue is with the data integrity, and
being able to create a data schema in the RDBMS with
the correct constraints that mirror the object model. In
this case, a child couldn’t exist without a parent, so we
want to put a non-null foreign key constraint on
the PARENT column on the CHILD table in the data-
base. However, this means that you’d be prevented
from performing an operation like parent.getChil-
dren().remove(child), because the child would be
orphaned without a parent, which is against the
model. For EJB2, it means you forgo that constraint,
and actually allow nulls in the child’s PARENT column.
However, it made coding much easier. In Hibernate,
you’d define one side of the relationship as read-only
using the attribute inverse=”true.” Hibernate persists
the association only through the non-inverse side of
the relationship. What does that mean? If we were to
define the inverse attribute in the parent’s mapping
(one-to-many), it means that the parent’s children
collection is read-only. Hibernate doesn’t update the
association through any modification to the parent’s
children collection.
 Consider the following code:

Parent alice = new Parent();

Parent jane = new Parent();

Child mary = new Child();

mary.setParent(alice);

jane.getChildren().add(mary);

 Who ends up being mary’s parent? Since we defined
the inverse attribute on the parent, it means that Hi-
bernate persists the association only when we invoke
setParent() on the child. In the end, mary’s parent is
alice. The effect of this is that we end up having to
code the association on both sides to be safe. To
delete a child, you have to make sure to delete the
child POJO and from its parent, otherwise you’d get
the dreaded “deleted object would be re-saved by
cascade (remove deleted object from associations)”
exception, because the parent object would still retain
the child object in its collection and not remove it
automatically. We certainly had to work through plenty
of those problems before the application functioned
correctly as before, since we became reliant on the
flexibility of being able to associate entities from ei-
ther side of the relationship. However, having a stricter
set of constraints also guarantees that you don’t end
up with mysteriously orphaned rows in the database
and a whole different set of problems (which we had
experienced with EJB2).

Successful Quest?
 Obviously, the end result is not a fully database-in-
dependent application. As of today, Hyperic HQ only
supports Oracle and PostgreSQL backends. However,
the migration to Hibernate improved portability on
many fronts. There’s also stronger mapping between
Java objects and the database persistence. The tools
aren’t complete, and we are maintaining some tools
that leave much to be desired. We’ll soon put this recipe
to the test, though. By the time you read this, we will
probably have ported Hyperic HQ to run on additional
databases. In my next article, we’ll move into the ap-
plication layer and examine how Hibernate queries the
database and compare the merits between SQL, EJBQL,
and HQL.

Intelligent GUIs Should
Require No Thought to Operate
by Joe Winchester, Desktop Java Editor
–continued from page 3

though, the desire to spend as little time
being interrupted leads the user to learn
all that is required is the minimum set of
input to make the Finish button enabled
and get the dialog to dismiss itself. Despite
this, I find that it’s a rare GUI designer
who will avoid the knee-jerk decision to
use a modal dialog to report a situation
that, while exceptional to the application,
is just a distraction and annoyance to the
user, and for modal screens to be used for
dialogs such as property pages, creation
wizards, and so forth.
 The second problem with mapping
brain function to GUIs is that the mind

is not a pre-emptive parallel multi-task-
ing machine, but it is basically capable
of serial thought. Switching between one
thought and another requires moving the
locus of conscious attention, rather like
moving an imaginary cursor inside the
mind to a new position. This takes time to
do and, for the task being left behind, this
will either fade from short-term memory
in a few seconds, or else must be moved
to unconscious thought by repetition or
reinforcement.
 GUIs that work well are those that
embrace the way the mind works, and
only invoke conscious thought for the ex-
perienced user as and when required. The
problem that GUIs often encounter is that
they’re sold on the basis of how they look,
the sparkle and up-front razz, and how
quickly they can simplify tasks they’re en-

gineered specifically to demo well. How-
ever, the true test comes when a skilled
user can operate them with unconscious
efficiency to mirror the speed at which
touch typists can capture information
into a console-based text app. I’ve worked
on several failed applications for financial
institutions where we wrote superb GUI
applications that the users just rejected
out of hand because there were too many
screens presented in a manner that, while
familiar to IDE users’ unconscious brains,
were just over complex to end users who
reverted to spreadsheets to capture all
their data and create outputs. To get the
edge over basic tools it needs to replace,
GUI design must engage the user’s brain
on their terms, not that of the designer or
the framework and language on which it
runs.

JDJ.SYS-CON.com14 May 2007

here are three main types
of software bugs:
• Poorly implemented require-
 ments – The software doesn’t oper-

ate as expected because the functional-
ity defined in the requirements was
implemented incorrectly.

• Missing or incomplete requirements –
The software doesn’t perform necessary
operations or handle feasible scenarios
because the stakeholders/designers
didn’t anticipate the need for such func-
tionality and didn’t specify
requirements for it, or because the
developers failed to implement a
specified requirement.

• Confused user – The software was
designed in a way that lets confused
users take unexpected paths.

 Building a robust regression suite is the
best way to identify poorly implemented
requirements, and performing negative
testing is the best way to identify confused
user errors. However, finding missing
requirements is difficult because it’s not
clear what you’re looking for. Flow analysis,
which basically analyzes paths through the
code without executing it, is the only known
automated testing technique that leads you
to such problems. For instance, assume that
flow analysis identified a NullPointerExcep-
tion in a Java application. If you examine the
path that led to the exception, then consider
the conditions under which the program
might end up going down this path, you
might find a missing requirement – for
instance, the exception could be caused by
a certain situation that’s feasible but was
never anticipated during the design/plan-
ning phase. Such problems wouldn’t be
noticed if testing focused solely on writing
tests that verify requirements.
 Besides pointing to missing require-
ments, flow analysis also can expose con-
struction problems and logical flaws in an
application. It’s designed to be used as part
of a comprehensive regression test suite
that also includes pattern-matching static
analysis, JUnit tests, Cactus tests, HttpUnit
tests, and any other tests you use to verify

the software. Running the complete regres-
sion test suite – including flow analysis and
all the other tests – automatically and regu-
larly is the most effective way to determine
if code modifications/additions introduced
new problems, broke existing functionality,
or caused unexpected side effects.
 This article examines why and how to add
flow analysis to your existing testing strate-
gies. After introducing the general concept
and benefits of flow analysis, it demonstrates
how flow analysis helps you find critical
runtime bugs without executing code.

Static Code Flow Analysis - Background
 The term static code analysis means
different things to different people in the
software industry. There seems to be two
main static analysis approaches: (1) pro-
gram execution or flow-based analysis and
(2) pattern-based analysis.
 For program execution adherents, static
analysis means trying to logically execute
the program – sometimes symbolically – to
uncover code problems such as memory
corruption, leaks, and exceptions. This type
of testing largely focuses on identifying
code problems without creating test cases.
It provides developers with the “instant
feedback” they need to address defects
and security vulnerabilities quickly on the
desktop – while they’re still working on the
code and it’s fresh in their minds – and it
prevents defects and vulnerabilities from
making their way further downstream in
the software development process, which
is where they’re much more expensive to
identify and remediate.
 Flow analysis can be done using
automated technologies that determine
whether the application’s execution paths
match “suspicious behavior” profiles. For
each defect found, a hierarchical flow
path details the complete execution path
that leads to the identified defect, ending
with the exact line of code where the bug
manifests itself. In some cases, the analysis
configurations can be customized to make
the analysis process more flexible and
tailored to your unique project needs. As
a result, flow analysis can even be used to

detect violations bound to the use of very
specific APIs.
 Using flow analysis, development teams
gain the following key benefits:
• Perform more comprehensive testing

with existing resources: Flow analysis
complements other testing techniques
by letting you find problems that would
otherwise require the development,
execution, and maintenance of complex
test cases. The defects exposed by flow
analysis would be very difficult and time-
consuming to find through manual test-
ing or inspections, and would be expo-
nentially more costly to fix if they weren’t
detected until runtime. Flow analysis lets
developers quickly find, diagnose, and fix
classes of software errors that can evade
pattern-based static analysis and/or unit
testing. Exposing these defects early in
the software development lifecycle saves
hours of diagnosis and potential rework.

• Automatically identify defects that pass
through multiple classes: Most develop-
ers have done thorough testing on a class,
corrected all the apparent problems, inte-
grated the code then later encountered
problems, such as NullPointerExceptions,
that took days to diagnose because they
resulted from an obscure or complex
execution path that passed through mul-
tiple methods or even multiple packages.
Using flow analysis, the same problem
can be identified in seconds.

• Focus on actual defects and misuses:
Flow analysis results typically indicate
actual misuse (as opposed to the pos-
sible/hypothetical misuse that might be
reported during unit testing). For exam-
ple, flow analysis shouldn’t report a viola-
tion for the following code unless there
was a method in the source code calling
strlen and passing it a null value, but unit
testing could report a problem regardless
by passing null to the strlen method in
the test:

 public int strlen(String str)

 {

 return str.length();

 }

Analysis

by Nada daVeiga

Flow Analysis:
Static Analysis on Steroids

T

Nada daVeiga is the

Product Manager of Java

Solutions at Parasoft, where

she has been a senior mem-

ber of Professional Services

team for two years. Nada

holds a bachelors degree in

computer science from the

University of California, Los

Angeles (UCLA).

nada_daveiga@parasoft.com

How and why to add flow analysis to your existing testing strategies

Download a free copy of Perforce, no questions

asked, from www.perforce.com. Free technical support is

available throughout your evaluation.

Time-lapse View lets developers see every edit ever made to a file in a

dynamic, annotated display. At long last, developers can quickly find

answers to questions such as: ‘Who wrote this code, and when?’ and

‘What content got changed, and why?’

Time-lapse View features a graphical timeline that visually recreates

the evolution of a file, change by change, in one fluid display. Color

gradations mark the aging of file contents, and the display’s timeline

can be configured to show changes by revision number, date, or

changeset number.

Time-lapse View is just one of the many productivity tools that come

with the Perforce SCM System.

Introducing Time-lapse View,
a productivity feature of Perforce SCM.

Perforce Time-lapse View

Perforce Fast Software Configuration Management

MEET PERFORCE AT

JAVAONE BOOTH

#415

SEE A DEMO OF THE

PERFORCE PLUG-IN

FOR ECLIPSE

Download a free copy of Perforce, no questions

asked, from www.perforce.com. Free technical support is

available throughout your evaluation.

Time-lapse View lets developers see every edit ever made to a file in a

dynamic, annotated display. At long last, developers can quickly find

answers to questions such as: ‘Who wrote this code, and when?’ and

‘What content got changed, and why?’

Time-lapse View features a graphical timeline that visually recreates

the evolution of a file, change by change, in one fluid display. Color

gradations mark the aging of file contents, and the display’s timeline

can be configured to show changes by revision number, date, or

changeset number.

Time-lapse View is just one of the many productivity tools that come

with the Perforce SCM System.

Introducing Time-lapse View,
a productivity feature of Perforce SCM.

Perforce Time-lapse View

Perforce Fast Software Configuration Management

MEET PERFORCE AT

JAVAONE BOOTH

#415

SEE A DEMO OF THE

PERFORCE PLUG-IN

FOR ECLIPSE

JDJ.SYS-CON.com16 May 2007

Analysis

Running Flow Analysis
 To better understand the types of defects that
flow analysis can expose, consider how it can
be applied to two sample Java classes. For our
purposes, flow analysis will be done with the
BugDetective technology featured in Parasoft
Jtest.
 One sample class involves a class instance
field that can be null (Listing 1 – TestFields
class) and the second one involves the same
class with a local variable that can be null
(Listing 2 – TestLocal class). Both classes call
a LocalHelper class. The goal is to demon-
strate how flow analysis handles (1) intra-
procedural calls, and (2) inter-procedural
calls (a) within one class and (b) that cross class
boundaries.
 Both of the examples (see below) contain
instance field and local variable variations of the
same defects. The methods named “falsePositive”
contain false positives and the methods named
“truePositive” contain true positives.
 To do the flow analysis, I selected the two
sample classes in my IDE (Eclipse) then ran a
“BugDetective” Test Configuration. This flow
analysis flagged the following defects in the two
files (see Table 1).
 All false positives are marked in blue and all
true positives are marked in red. X indicates that
a flow analysis violation wasn’t reported in the
method and ̧ indicates that a flow analysis viola-
tion was reported in that method.
 Taking a closer look at the results, notice
that no false positives were flagged in these
examples. Also notice that Jtest’s flow analysis
found the defects in the truePositive3 method to
be false positives even though other technolo-
gies may report them as true errors.
 Consider the following code from the Test-
Fields class:

Object x; //NPE origin

TestFields(Object x) {

 this.x = x;

}

int truePositive3(boolean b) {

 Object y = null;

 if (x != null)

 y = new Object();

 if (y != null)

 return x.hashCode() +

y.hashCode();

 else

 return x.hashCode(); //NPE

}

 The instance variable x is initially initialized
to null, but it gets reassigned to the value of
argument x in the constructor call.
 This violation wasn’t flagged during flow
analysis because when simulating execution
paths through the code, the flow analysis tech-
nology saw a potential violation point on the
path (the line marked with //NPE) but it didn’t
see a path from the violation origin statement
(the line marked with //NPE origin) to that
line without going through a constructor. This
wasn’t reported as a violation because the flow
analysis didn’t find a line where x is initialized
to null. The code didn’t find a path in the source
code that contains the following sequence of
steps:

TestFields tf = new TestFields();

tf.truePositive3(true|false);

 Nor did it find a path such as this:

TestFields tf = new TestFields(null);

tf.truePositive3(true|false);

 However, assume that the following method
is added to the TestFields class:

void callerTruePositive3() {

 TestFields tf = new TestFields(null);

tf.truePositive3(true);

}

 Flow analysis now flags this violation since it
sees the violation origin and violation point, as
well as a code path that leads from one to the
other.

Conclusion
 Flow analysis helps software development
teams find critical runtime bugs without
executing code. Since it tries to check whether
potential problems could actually be triggered
by real application paths, it reports an extremely
high ratio of true positives to false positives. This
means that you’ll be alerted to problems that
are likely to occur at runtime – but you won’t
need to waste time reviewing an overwhelm-
ing number of false positives. This is especially
helpful if you need a fast way to zero in on criti-
cal defects in a large code base.
 When flow analysis is applied as part of a
comprehensive regression test suite, it helps
development teams to:
• Increase team development productivity by

identifying and addressing defects from the ear-
liest phases of the development cycle – when
fixing them requires minimal effort and rework.

• Achieve more with existing development
resources by automatically vetting known
coding issues so developers and QA can
spend more time on tasks that require human
intelligence.

• Build on the code base with confidence by effi-
ciently constructing, continuously executing,
and maintaining a comprehensive regression
test suite that detects whether updates break
existing functionality.

• Decrease time to market by building an effi-
cient, consistent, and controlled team work-
flow for applying best practices that reduce
testing time, testing effort, and the number of
defects that reach QA.

• Reduce support costs by automatically per-
forming negative testing on a broad range of
potential user paths to uncover problems that
might otherwise surface only in “real-world”
usage.

• Quickly expose problems in complex, diffi-
cult-to-test systems by automatically exposing
many critical bugs in software for SOA and Java
EE without involving staging systems.

–Listings 1 and 2 are on pages 18 & 20

 Table 1 Defects identified by Jtest’s flow analysis. X indicates that a flow analysis violation wasn’t reported in the method and [check

mark] indicates that a flow analysis violation was reported in that method.

Method Name TestField.java TestLocal.java
falsePositive1 X X

falsePositive2 X X

falsePositive3 X X

falsePositive4 X X

ifalsePositive1 X X

truePositive1 ¸ ¸
truePositive2 ¸ ¸
truePositive3

truePositive4 ¸ ¸
truePositive5 ¸ ¸
truePositive6 ¸ ¸
itruePositive1 ¸ ¸
itruePositive2 ¸ ¸
itruePositive3 ¸ ¸

JDJ.SYS-CON.com18 May 2007

Analysis

Listing 1

public class TestFields {

 Object x;

 TestFields(Object x) {

 this.x = x;

 }

 int falsePositive1(int level) {

 x = null;

 if (level > 0)

 x = new Object();

 if (level > 4)

 return x.hashCode();

 return 0;

 }

 int truePositive1(int level) {

 x = null;

 if (level > 0)

 x = new Object();

 if (level < 4)

 return x.hashCode();

 return 0;

 }

 int falsePositive2(boolean b) {

 x = null;

 if (b)

 x = new Object();

 if (b)

 return x.hashCode();

 return 0;

 }

 int truePositive2(boolean b) {

 x = null;

 if (b)

 x = new Object();

 if (!b)

 return x.hashCode();

 return 0;

 }

 int falsePositive3(boolean b) {

 Object y = null;

 if (x != null)

 y = new Object();

 if (y != null)

 return x.hashCode() + y.hashCode();

 else

 return 0;

 }

 int truePositive3(boolean b) {

 Object y = null;

 if (x != null)

 y = new Object();

 if (y != null)

 return x.hashCode() + y.hashCode();

 else

 return x.hashCode();

 }

 int falsePositive4(boolean a, boolean b) {

 x = null;

 Object y = null;

 if (a) x = “x”;

 if (b) y = “y”;

 if (y != null)

 return x.hashCode() + y.hashCode();

 else

 return 0;

 }

 int truePositive4(boolean a, boolean b) {

 x = null;

 Object y = null;

 if (a) x = “x”;

 if (b) y = “y”;

 if (y != null)

 return x.hashCode() + y.hashCode();

 else

 return x.hashCode();

 }

 int truePositive5() {

 if (x == null) return x.hashCode();

 return 0;

 }

 int truePositive6() {

 if (x == null) {

 Object y = x;

 return y.hashCode();

 }

 return 0;

 }

 int ifalsePositive1(boolean b) {

 x = null;

 if (!b)x = new Object();

 return LocalHelper.helper1(x, b);

 }

 int itruePositive1(boolean b) {

 x = null;

 if (b) x = new Object();

 return LocalHelper.helper1(x, b);

 }

 int itruePositive2() {

 x = null;

 return LocalHelper.helper2(x);

 }

 int itruePositive3(boolean b) {

 x = null;

 if (b) x = “x”;

 return LocalHelper.helper3(x);

 }

}

Listing 2

public class TestLocal {

 int falsePositive1(int level) {

 Object x = null;

 if (level > 0)

Note: The two sample classes were adapted from the code featured in David Hovemeyer and William Pugh’s article “Finding More Null Pointer Bugs, But Not Too Many,”

 which is available at http://findbugs.cs.umd.edu/papers/MoreNullPointerBugs07.pdf.

Listing 2 continued
on page 20

1-888-288-1277
www.esri.com/develop

info@esri.com

Copyright © 2005 ESRI. All rights reserved. The ESRI globe logo, ESRI, www.esri.com, and @esri.com are trademarks, registered trademarks,
or service marks of ESRI in the United States, the European Community, or certain other jurisdictions. Other companies and products
mentioned herein are trademarks or registered trademarks of their respective trademark owners. Photo courtesy of Transport Management
Centre, Roads and Traffi c Authority NSW.

Give Your Users the Complete Picture
to Help Them Make Better, Faster Decisions.

Applications that incorporate geographic information system (GIS)
technology give users a visual way to analyze their data and make
more informed decisions. With ESRI® developer solutions, you can
quickly and cost-effectively bring geography and mapping capabilities
into your applications, regardless of whether you are building desktop,
client/server, mobile, or Web applications.

ESRI developer solutions enable you to

4 Quickly and cost-effectively integrate GIS capabilities
into your new and existing applications.

4 Select the developer tools that fi t best with your architecture
(ESRI’s developer products encompass GIS components,
servers, and Web services).

4 Use the development environment of your choice, including
Java™, .NET, COM, and C++, and deploy applications on a
variety of platforms.

4 Access and manipulate data in multiple formats.

To learn more about the ESRI developer solutions that are right
for you, visit www.esri.com/develop.

Build Geography Into Your Applications

Web-based property management system

Population demographics analysis application

Using GIS components within a commercial IDE

G25335_JDJ_May07.indd 1 4/13/07 4:05:18 PM

JDJ.SYS-CON.com20 May 2007

Analysis

 x = new Object();

 if (level > 4)

 return x.hashCode();

 return 0;

 }

 int truePositive1(int level) {

 Object x = null;

 if (level > 0)

 x = new Object();

 if (level < 4)

 return x.hashCode();

 return 0;

 }

 int falsePositive2(boolean b) {

 Object x = null;

 if (b)

 x = new Object();

 if (b)

 return x.hashCode();

 return 0;

 }

 int truePositive2(boolean b) {

 Object x = null;

 if (b)

 x = new Object();

 if (!b)

 return x.hashCode();

 return 0;

 }

 int falsePositive3(Object x, boolean b) {

 Object y = null;

 if (x != null)

 y = new Object();

 if (y != null)

 return x.hashCode() + y.hashCode();

 else

 return 0;

 }

 int truePositive3(Object x, boolean b) {

 Object y = null;

 if (x != null)

 y = new Object();

 if (y != null)

 return x.hashCode() + y.hashCode();

 else

 return x.hashCode();

 }

 int falsePositive4(boolean a, boolean b) {

 Object x = null;

 Object y = null;

 if (a) x = “x”;

 if (b) y = “y”;

 if (y != null)

 return x.hashCode() + y.hashCode();

 else

 return 0;

 }

 int truePositive4(boolean a, boolean b) {

 Object x = null;

 Object y = null;

 if (a) x = “x”;

 if (b) y = “y”;

 if (y != null)

 return x.hashCode() + y.hashCode();

 else

 return x.hashCode();

 }

 int truePositive5(Object x) {

 if (x == null) {

 return x.hashCode();

 }

 return 0;

 }

 int truePositive6(Object x) {

 if (x == null) {

 Object y = x;

 return y.hashCode();

 }

 return 0;

 }

 int ifalsePositive1(boolean b) {

 Object x = null;

 if (!b) x = new Object();

 return LocalHelper.helper1(x, b);

 }

 int itruePositive1(boolean b) {

 Object x = null;

 if (b) x = new Object();

 return LocalHelper.helper1(x, b);

 }

 int itruePositive2() {

 return LocalHelper.helper2(null);

 }

 int itruePositive3(boolean b) {

 Object x = null;

 if (b) x = “x”;

 return LocalHelper.helper3(x);

 }

}

public class LocalHelper {

// Bug when x is null and b is false

 public static int helper1(Object x, boolean b) {

 if (b) return 0;

 return x.hashCode();

 }

 public static int helper2(Object x) {

 return x.hashCode();

 }

 public static int helper3(Object x) {

 return x.hashCode();

 }

}

The Moscone Center, San Francisco, CA
JavaOne Pavilion: May 8–10, 2007

May 8–11, 2007

POSSIBILITIES
OPEN

java.sun.com/javaone

**SAVE$100
Register Today!

Please use priority code: J7PASC

 * Content subject to change.
** Offer not available on-site.

> JAVA™ TECHNOLOGY IS NOW OPEN–AND SO ARE THE POSSIBILITIES
The 2007 JavaOneSM conference has expanded and is definitely one conference you won’t want to miss. With the decision to
open source Java™ technology, 2007 marks a major milestone for the Java platform. Whether your passion is scripting languages,
open source, SOA, Web 2.0, mashups, or the core Java platform, this is a conference that has something for almost all
technology developers.

Attend the JavaOne conference, and you will have many opportunities over the course
of four days to network with like-minded developers; attend in-depth technical sessions;
engage with your peers in Hands-on Labs and BOFs; and experience general sessions
featuring speakers from Intel Corporation, Motorola, Inc., Oracle Corporation, and
Sun Microsystems, Inc. Meet face-to-face with leading technology companies, and
test-drive the latest tools and technologies shaping the industry.

> Scripting
> (JavaScript™ Programming Language, PHP, Ruby on Rails, Python, and More)

> Open Source and Community Development

> Integration and Service-Oriented Development

> Web 2.0 Development

LEARN MORE ABOUT*:
> AJAX

> Java Technology and the
> Core Java Platforms (EE/SE/ME)

> Compatibility and Interoperability

> Business Management

Copyright © 2007 Sun Microsystems, Inc. All rights reserved. Sun, Sun Microsystems, the Sun logo, Java, the Java Coffee Cup logo, JavaOne, the JavaOne logo, Java Developer Conference, Java Community Process, JCP, 100% Pure Java, Java EE, Java ME, Java SE,
Jini, Solaris, "Write Once, Run Anywhere", and all Java-based marks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

JDJ.SYS-CON.com22 May 2007

e live in a relational world – which is too bad since
we develop with objects. Since most non-trivial
applications require information to be persisted and
retrieved in what is generically called a database,
we need to fi nd effi cient methods for persisting our

objects and retrieving them. Historically, this has been done with
relational databases and lots of code that fl attens the objects and
maps them to the relational tables. This can be done in Java or with
object-relational mapping tools like Hibernate.
 While most books and articles about object-oriented software
development discuss the benefi ts of using objects to describe the
problem space, currently most development is done in a more
convoluted manner, working from both the Java and database ends
and using various technologies to bridge the gap between them.
Hibernate has emerged as one of the most popular ways to address
this development challenge.
 Instead of starting with a database schema and building objects
from the tables and data therein, this article will focus on starting
with the Java objects and evaluate a few of the many options for
persisting them. We will compare and contrast the methods, as well
as discuss challenges and problems specifi c to object persistence
management (see Table 1).

Options for Persisting Java Objects
 There are many options for persisting your Java objects. Some are
best used when your persistence needs are simple (such as saving
program state between sessions) and some are better when your
needs are complex (such as saving lots of data over long periods of
time). Some applications simply need to load data for use in con-
fi guring the application, while others require sophisticated tools for
searching and fi ltering object sets. The latter is typical for applications
that use a database for persistence and will be the primary focus here.
For each project you work on, you should evaluate which persistence
strategy best fi ts your needs based on the project requirements. The
following persistence mechanisms will be discussed in this article:
• Hibernate

– The most commonly used object-relational mapping tool
• DB4Objects DB4O

– A small simple embeddable object database
• InterSystems’ Caché Database with Jalapeño

– An enterprise database that lets you store POJOs via its
Jalapeño technology – but also provides a JDBC/SQL interface
to the objects stored in the database

 Please note that there are many other object-relational mapping

solutions and object databases available, the purpose of this article
is simply to provide some insight as to the benefi ts of using these
technologies versus a JDBC/DAO implementation, how they compare
and to how you can use them for your projects.

Defi nition: DataStore – A system for storing and retrieving data. Can
be relational or object-oriented.

Object Persistence Mechanism Considerations
 For each of the persistence strategies outlined above, I will review
the following:
• Ease of Implementation

– How much preparation and/or configuration is required to per-
sist your objects?

• Ease of Persisting Objects
– How do you persist an object or objects?
– Is it straightforward and intuitive?
– Is it better/simpler/faster than using SQL and writing DAOs?

• Ease of Retrieving Objects
– What mechanisms are available for finding and retrieving the

objects in the datastore?
• Control over Object Depth

– How many objects do you want to save or retrieve at the same
time?

• Control over Object Property Breadth
– How many properties do you need access to? Can you only

return those properties?

Richard Conway is a

software developer and

technology consultant

with more than 15 years

of technology, project

management, and infor-

mation services experi-

ence. He has extensive

experience developing

Java/Struts-based web

applications. He started

focusing more on Swing

based developments at

the beginning of 2005

and has just fi nished a

Swing-based client/server

asset management

project. He lives in Miami

with his wife Patricia,

is currently working on

an EMR application, and

plays sand volleyball in

his spare time.

reconway@egrok.com

by Richard Conway

W

Hibernate, DB4O, and Caché Database with Jalapeno

Feature

Evaluating Options for
Persisting Java Objects

Table 1 The software development process

Typical/Object Relational Desired/Object Oriented
1 Define the problem space using Define the problem space using
 Nouns and Verbs to identify Nouns and Verbs to identify
 Objects and Methods Objects and Methods

2 Identify all the data that must Identify all the data that must be
 be persisted as Objects and/or persisted AS OBJECTS and
 Tables, and document the document the relationships
 relationships between the between the OBJECTS
 OBJECTS
3 Develop a relational database Create the database based on the
 schema to contain the data, Object Schema. Ideally, you
 representing the Objects as one have a one-to-one mapping
 or more Tables in a database. between your business objects
 Work towards 3rd Normal Form and your database object store
4 Write SQL Code, create Data Avoid writing Data Access
 Access Objects, or use JDO to Objects or the equivalent.
 persist and load data between Deal with objects exclusively
 the POJOs and the database

~

23May 2007JDJ.SYS-CON.com

• Object Tree Traversal
– Can you access all related objects and their properties simply by traversing

the object tree?
• Enforcing Referential Integrity

– How do you ensure you don’t delete an object that other objects depend
on?

* For example, can you delete a department if employees
still exist?

– Does it support cascade deletes/updates?
• Enforcing Uniqueness

– How do you ensure that specific properties are unique in the database,
such as Social Security numbers?

• Support for Indices
– Can you define indices that will enhance the performance of your queries?

• Property Constraints
– Can you control/limit the values that will be entered into the

datastore?
• Security and Access Control

– How do you control who has access to the data and what they can do with
it?

Ease of Implementation
 One of the things we’re trying to get away from is the effort to write and
maintain DAOs. So let’s look at what’s involved in setting up your datastore
and prepping your POJOs to be persisted for each of the persistence mecha-
nisms identifi ed.

Hibernate
 Hibernate has the most complex setup of the solutions discussed here,
but it’s not that bad and Hibernate does provide a lot of tools to make your
life easier. There are multiple ways to implement Hibernate, but since we are
starting the POJOs, we’ll only consider the case of adding annotations to the
Java class to support Hibernate persistence. If you’re using Hibernate 3.2 with
Java 1.5 or above, you can use annotations to map your POJO properties to
your Table columns. Using annotations is much less verbose than defi ning
your mappings in XML fi les and has the additional benefi t of reducing the
number of fi les you must keep track of. In addition to annotating your POJOs
you need to provide the fully qualifi ed name of the annotated class as a
<mapping> element in the hibernate.cfg.xml fi le.
 The minimal steps for preparing to persist your objects with Hibernate are:
1) Set up a database and create a username and password for Hibernate to

access it with
2) Annotate your Java Classes
3) Add your class mappings, database, and user/login information to the

hibernate.cfg.xml file
4) Run the Hibernate hbm2ddl to create the schema in the database

 An example of mapping in the hibernate.cfg.xml fi le:

<mapping class=”com.egrok.hibernate.Person”/>

 Since with Hibernate, you’re typically mapping to a relational database,
complex objects may need to be persisted to multiple tables, adding some
complexity to the implementation.
 To save you the effort of annotating everything, Hibernate provides many
default behaviors. For example, Hibernate by default will map your class to a
Table of the same name so you don’t have to use the @Table annotation un-
less the class name and table name differ. The same goes for class properties.
They will be mapped to columns of the same name in the Table. If you want
to override this behavior, use the @Basic annotation. This type of intelligent
behavior minimizes the work you have to do to persist a class. For our Person
class example, this means that it will be persisted to the database Table named
“Person,” which will have three columns (id, fi rstName, and lastName) and the

id column will be the primary key. Hibernate provides excellent control over
how the primary key is assigned, but that’s beyond the scope of this article.
 An example of a minimally annotated POJO:

import javax.persistence.Entity;

import javax.persistence.Id;

@Entity

public class Person{

 @Id

 public Integer id;

 public String firstName;

 public String lastName;

}

 An example of how a one-to-many relationship is defi ned:

 // In the Department class -

 @OneToMany(cascade=ALL,mappedBy = “department_id”)// Requires the foreign key

“department_id” in the Person class

 public ArrayList<Person> getEmployees(){// Method to return all employees

 return employees;

 }

 // In the Person class

 @ManyToOne

 @JoinColumn(name = “department_id”)

 public Department getDepartment(){ // Method to return the department

 return department;

 }

 As a fi nal time and labor saver, you can now use Hibernate’s hbm2ddl tool
to generate the database schema for you. While you may be splitting objects
to save them in multiple tables, which is not required for the object databases,
you do get very good control over the mapping process. And as we’ll see later,
there are also circumstances where the relational approach has advantages
over a pure object approach.

DB4O
 Implementing persistence with DB4O is dead easy. You don’t need to create
a database ahead of time or prep your Java Classes at all. Simply call Db4o.
openFile() and provide the path to your database fi le as the parameter. If the
database doesn’t exist, it will be created for you. Then instantiate an Object and
call db.Save(object) to persist it. It doesn’t get any simpler.

ObjectContainer db=Db4o.openFile(“C:\db4o\test.yapp”);

try {

 Person person = new Person(“James”,”Hogan”);

 db.set(person); // Itʼs now saved!

}

finally {

db.close();

}

 Since you’re storing actual Java objects, there’ no mapping required. There’s
also no need to annotate relationships, but you must provide properties in the
objects on both sides of a relationship if you want to be able to traverse the
object tree bidirectionally.

 // In the Department class

 public ArrayList<Person> employees;

 // In the Person class

 public Department department;

JDJ.SYS-CON.com24 May 2007

Analysis

Caché
 Setting up persistence with Caché and Jalapeño falls between Hibernate and
DB4O in complexity. No mapping is required, however, as InterSystems correctly
points out in their Jalapeño documentation: “Databases define concepts such as
constraints, relationships (with referential integrity), and indices, which have no
equivalent within a Java class definition.” To address and support these concepts,
InterSystems’ Jalapeño provides database operation-specific annotations for use
in your Java Classes, much as Hibernate does. However, they are only used by the
Jalapeño SchemaBuilder to create the Object Storage in the Caché database, and
aren’t required (other than for documentation purposes) after the Object Storage
has been created.
 The minimal steps for preparing to persist your objects with Jalapeño/Ca-
ché are as follows:
1) Create a Namespace and Empty Database using the Caché System

Management Portal
2) Run the Jalapeño SchemaBuilder to create the Object Storage in the data-

base

 An example of a minimally annotated POJO that can be persisted using
Jalapeño/Caché:

public class Person{

 public String firstName;

 public String lastName;

}

 Like DB4O, since Caché stores objects, there’s a one-to-one relation-
ship between your POJOs and the Caché Object Classes defined in the
database – so no mapping is required.
 Note: For any non-trivial object schema you’ll have to add annotations to
support database specific functionality – such as relationships and indices. An-
notating your Java Classes for Jalapeño works like the way it works for Hibernate.
InterSystems is releasing NetBeans, Eclipse, and IntelliJ plug-ins for Caché 2007
that makes the process of adding annotations a point-and-click operation. Thus
you can quickly define or modify the Object Storage in the Caché database.
 An example of how a relationship is defined:

 // In the Department class

 @Relationship(type=RelationshipType.ONE_TO_MANY,inverseClass=”Person”)

 public ArrayList<Person> getEmployees(); // Method to return all employees

 // In the Person class

 @Relationship(type=RelationshipType.MANY_TO_ONE,inverseClass=”Department”)

 public Department getDepartment(); // Method to return the department

Ease of Persisting Objects
 Once you have your databases created and configured, persisting
your objects with any of these methods is very simple. Any of these is a
distinct improvement over using JDBC/SQL and DAOs.

Hibernate
 Once your Hibernate mappings are configured, persisting an object is
very straightforward:

try{

SessionFactory factory = new Configuration().configure().buildSessionFactory();

Session session = factory.openSession();

Transaction tx = session.beginTransaction(); //optional

Person person = new Person(“James”,”Hogan”);

Long personID = (Long) session.save(person);

tx.commit();

session.close(); //optional

}catch(Exception e) {

}

DB4O
 Once again, DB4O makes it extremely easy to persist your objects.
Simply instantiate an object and then call db.set() on it.

ObjectContainer db=Db4o.openFile(“C:\db4o\test.yapp”);

try {

 Person person = new Person(“James”,”Hogan”);

 db.set(person); // Itʼs now saved!

// commit is called implicitly when you close the container,

// so you donʼt really need to call it here.

db.commit(); //optional

}finally {

db.close();

}

Caché
 Caché also makes it extremely simple to save your objects.

try {

/* Connect to this machine, in the SAMPLES namespace */

ObjectManager objectManager = connect (connectiontype, host, username,

password);

 Person person = new Person(“James”,”Hogan”);

 Object id = objectManager.save (person, false);

 objectManager.close ();

} catch (Exception ex) {

}

Ease of Retrieving Objects
 Storing data is only half the equation. It must be easy to access your objects as
well. Once again all three solutions simplify the process of getting an object.

Hibernate
 You can use HQL or SQL to retrieve objects using Hibernate. For example:

package hello;

import java.util.*;

import org.hibernate.*;

import persistence.*;

public class HibernateExample {

public static void main(String[] args) {

Session session = HibernateUtil.getSessionFactory().openSession();

Transaction newTransaction = session.beginTransaction();

List people = newSession.createQuery(“from Person m order by�m.name asc”).list();

System.out.println(people.size() + “ people found:”);

for (Iterator iter = people.iterator();

iter.hasNext();) {

Person person = (Person) iter.next();

System.out.println(person.getName());

}

newTransaction.commit();

����������������
�������������������������������

COPYRIGHT ©2007 SYS-CON MEDIA ALL RIGHTS RESERVED

������������������������������
���

��

������������������������
����������������������������

�������������������������������

��������������������������������

����������������������������������

����������������������������

�������������������

������������������������������
��������������������������

�����������������������������

���������������������������������

��������������������������

������������������

���������������������������������

�����������������������������������

�������������
�������

���

�������������������

������������������������
���������������

������

� �� ����������������
� � ����������

� �� ����������������
� � �������������

� �� �����������
� � ��������������������
� � ����������

� ��� ������������������������
� � ��������������������
� � ������������������������������������

���� �����������������������
� � �������������

���� ����������������
� � �����������������������
� � ���������������������������������
� � ������������������������������

���� ��������������������������
� � ���

���� �������������������
� � ����������������������
� � ������������������

��������������

���������������
�����������������������

���������������������

� ��� ���������� �
� �������������
� � �����������

������������������

��
���
��

���
��
��
����������������������������

��
��
��
��
���
���

���
��

����
��������

����

����������

����������
����������������������

����������������

�
������������

�
�������

�
�������������

�
�����������

� ������������

�
����������������

� ���

�
����������

�
������������

� ���

�
����

�
�������

� ��������������

���������������

�����������

�
�����������

� ����������������

�
���������������

�
�����������������

�
��������������������

�
������������������

� �����������

�
����

�
�����������������������

�
����������������������

�
���������������������

�
�����

�
�����������������������

����������

����������
����������������������

��

��
����������

����������
������������������������������

����������
����������

����������
����������

����������
������������������������������

����������
��������������������

����������
������������������������������

����������
����������

����������
����������

����������
������������������������������

����������
����������

��
����������

����������������������
������������������������������

����������������������
����������

����������������������
����������

����������������������
������������������������������

����������������������
��������������������

����������������������
������������������������������

����������������������
����������

����������������������
����������

����������������������
������������������������������

����������������������
����������
����������

����������
����������������������

������������

�������������������������������������
����������������������

����������
�������������������������������

����������������������������

���
���

��

���

������������������������������

��������
������������

������������������������

��
������������������������

��������
����

3

JDJ.SYS-CON.com26 May 2007

Analysis

newSession.close();

// Shutting down the application

HibernateUtil.shutdown();

}

}

DB4O
 DB4O provides three different ways to retrieve your objects: Query By
Example, Native Queries, and SODA Queries. Each has its pros and cons.
 The simplest and most limited is QBE. With this method, you create a
prototype of the object you’re looking for using one of the object’s con-
structors, and DB4O returns the matching records.

// QBE Example – Retrieve Person By Name

Person proto=new Person(“Ben”,”Franklin”,0);

ObjectSet result=db.get(proto);

listResult(result);

 Native Queries are the preferred query method and are typesafe,
compile-time checked, and refactorable.

Caché
 Cache provides an object oriented query mechanism that uses SQL for
selection and which returns an iterator you can use to traverse the returned
objects. You also have the option of using JDBC and SQL to perform complex
queries over multiple related objects (SQL JOINS) or VIEWS. The results of
these complex queries can also be accessed as objects, as long as the Object ID
is returned as part of the query.

import com.intersys.pojo.ApplicationContext;

import com.intersys.pojo.ObjectManager;

try {

 ObjectManager objectManager;

String url=”jdbc:Caché ://localhost:1972/” + namespace;

 objectManager = ApplicationContext.createObjectManager (url,

 username, password);

 String sql = “Name %startsWith ?”; // Search for people by name

 if (“null”.equalsIgnoreCase (query)){

 query = null;

}

 String[] qargs = {query};

 Iterator people = objectManager.openByQuery (Person.class, sql,

qargs);

 while (people.hasNext()){

 IPerson person = (Person) people.next();

 System.out.print (“Name: “ + person.getName());

 }

 objectManager.close ();

} catch (Exception ex) {

 System.out.println(“Caught exception: “ + ex.getClass().getName() +

“: “ + ex.getMessage());

 ex.printStackTrace();

}

Controlling Object Depth
 One of the challenges of storing objects is to control how many objects are
stored and retrieved at one time. For example, consider a company that contains
100 departments and each department contains 25 to 50 employees. Using
Java Serialization, serializing the Company object would also persist all the

Department and Employee objects – and instantiating the Company would
also instantiate the related Department and Employee objects. If all you need to
persist is the Company Object, you’ve done a lot of unnecessary work! There’s
considerable impact on performance and memory requirements for every ob-
ject instantiated. Furthermore, if you send this object over the network, you want
to be as efficient as possible – and therefore only send the Company Object.
 What’s needed is a mechanism for controlling how deeply you tra-
verse the object tree when instantiating objects.

Hibernate
 Hibernate handles this well because it’s based on a relational data-
base structure. It is easy to control the depth of the data (or the depth of
the objects) returned by specifying LAZY or EAGER loading and if you
switch to JDBC, you have total control using SQL JOIN statements.
 When you specify LAZY loading, the POJO is actually replaced with a
proxy object that will load properties and collections via the Hibernate
session as needed.

DB4O
 DB4O provides excellent control over object depth. You can easily specify
exactly how many levels you want to retrieve or update. You can also turn on
cascading updates/deletion – which traverses the entire object graph:

Db4o.configure().objectClass(Car.class).cascadeOnUpdate(true);

Or you can specify the activation depth when selecting/updating/deleting:

SensorReadout readout=car.getHistory();

while(readout!=null) {

db.activate(readout,2); // Activate the next 2 object levels!!!

System.out.println(readout);

readout=readout.getNext();

}

 Thus you can specify: “Get the next three levels only” if desired or
“Get everything!”
 CAUTION: DB4O doesn’t enforce referential integrity, so be very care-
ful when deleting with cascade delete enabled. You can delete objects
that are still pointed to by other objects in the database.

Caché
 Caché provides good control over object depth as well. You
can specify FetchType = Eager or Lazy like Hibernate. Calling the
“detach(Object)” method ensures that all data in the given object
(including all objects reachable from it by following references) can be
accessed without a connection to the database.
 Once again, if you switch to JDBC/SQL, you have total control over object
depth via SQL JOIN statements, but can still open the objects referenced in the
resultset.

Controlling Object Property Breadth
 You may also want to limit how much data you retrieve from a given ob-
ject. A complex object may consist of 20, 30, or even 50 or more properties,
including embedded objects and lists or arrays of objects. What if you only
need access to one or two of those properties? Isn’t it overkill to instantiate
the entire object, populating 50 properties in order to get two of them? If
you’re retrieving a list of such objects, you could end up with an array of 200
objects – along with all 50 of their properties – when all you need or want is
one or two properties per object.
 What’s needed is a mechanism for controlling object property
coverage.

27May 2007JDJ.SYS-CON.com

 One approach is to define a POJO that only defines a subset of the
properties in the original object and populate it. This is where a relational
database has an advantage over an object database. You can use JDBC to
retrieve just the data you want and populate the POJO. “SELECT firstName,
LastName FROM PERSON WHERE ID = 1”

Hibernate
 Since Hibernate is typically backed by a relational database, it provides
excellent control over your object property coverage. You can define a SE-
LECT statement that only retrieves the properties you’re interested in and
provides them to you as a Java List or a List of Object Arrays.

DB4O
 DB4O is a pure object database, so you must instantiate the object to ac-
cess its properties. DB4O provides no help for you on this score.

Caché
 Besides the Object interface that Caché provides, it also provides an SQL
projection or interface. This lets you access objects as if they were tables and
columns in a relational database. Using this method, Caché provides excellent
control over your object property breadth.

Object Tree Traversal
 Once you have your objects, you want to be able to traverse the object
tree. For example, if you start with an employee, you want to be able to ac-
cess the company name as follows:

employee.getDepartment().getCompany().getName().

 This is one of the most powerful features of object-oriented development
and one of the strongest arguments for using an object database.

Hibernate
 Unfortunately relational databases provide virtually no support for this type of
functionality – normally you’d have to issue SQL SELECTs to retrieve additional data
as needed and create the associated POJOs. Fortunately, Hibernate provides this
functionality for you by providing a proxy object to fetch additional mapped objects
as needed. This works as long as you have a valid Hibernate session object available.

DB4O and Caché
 Since they are object databases to begin with, DB4O and Caché handle
this with aplomb. As you make calls to related objects, they’re automatically
retrieved from the database. Thus you can access your objects as follows:

employee.getDepartment().getCompany().getName();

List myEmployees = department.getEmployees();

 And so on.

Enforcement of Referential Integrity
 How can you ensure you don’t delete an object that other objects depend
on? For example, can you delete a department if the employees still exist?
Does it support cascade deletes/updates?

Hibernate
 While you can define relationships using Hibernate annotations, the

JDJ.SYS-CON.com28 May 2007

Analysis

actual support and enforcement of referential integrity is dependent
on the database used on the back-end.

DB4O
 DB4O currently doesn’t enforce referential integrity.

Caché
 Caché provides full support for maintaining referential integrity, as
well as for performing cascade updates and deletes. This can be con-
trolled based on the way you define the relationships. One-to-many rela-
tionships enforce referential integrity, but don’t perform cascade updates
and deletion. Parent-Child relationships enforce referential integrity and
provide cascade update and deletion functionality as well.

Enforcement Of Uniqueness
 How do you ensure that specific properties are unique in the data-
base, such as Social Security numbers?

Hibernate
 Support for marking properties unique and enforcing it is supported
by most databases used as a back-end for Hibernate.

DB4O
 DB4O currently doesn’t provide any support for enforcing unique-
ness. This feature is currently undergoing beta testing and the tenta-
tive release date is round mid-summer 2007.

Caché
 You can mark as many properties unique as you want.

Support for Indices
 Can you define indices that will enhance the performance of your
queries?

Hibernate
 Use the annotation @Index to cause an index to be created for the
specified column or columns.

DB4O
You can define indexes in your DB4O configuration method before
you open the object container. For example:

Db4o.configure().objectClass(Foo.class).objectField(“bar”).indexed(true);

Caché
 Caché provides powerful indexing options. Besides specifying
that the property must be unique, you can specify the following index
types:

type = “” (default standard index), bitmap, bitslice, index, and key. For

example:

 @Indices({

 @Index(name=”IndexOnName”, columnNames={“Name”}),

 @Index(name=”IndexOnSSN”, type=”bitmap”, columnNames={“SSN”})

 })

 BitMap indices provide extremely high performance filtering for columns
that have a limited number of possible values (such as categories) or which
have a fixed number of characters (such as Social Security Numbers).

Enforcement of Property Constraints
 Can you limit or control the values that will be saved to the database?

Hibernate
 With Hibernate, you are limited to specifying that a property be NOT
NULL or UNIQUE, although you may be able to specify constraints in the
underlying database.

DB4O
 DB4O doesn’t provide any support for constraints.

Caché
 Caché provides @PropertyParameter and @PropertyParameters annota-
tions so you can control the values entered into a property. You can specify a
maximum value, minimum value, and even an input pattern.

 @PropertyParameter (name = “PATTERN”, value = “3N1\”-\”2N1\”-\”4N”)

 public String ssn;

 @PropertyParameter (name = “MINVAL”, value = “0”)

 public float balance;

Security and Access Control
 How do you control who has access to the data and what they can do
with it?

Hibernate
 This can be performed programmatically or via the underlying database.

DB4O
 You can encrypt and password-protect the database file, but there are
no other user access controls. Once you have access to the database, you
have access to all the data in it. If you want to control access to specific data
or objects in the database, this can only be done programmatically.

Caché
 This can be done programmatically or via the Caché System Management
Portal. You can specify which objects the user has access to as well as the level
of access (ALTER, SELECT, INSERT, UPDATE, DELETE, and REFERENCES)

Portability
 How portable is the solution? Is there a vendor tie-in?

Hibernate
 By definition and purpose, Hibernate helps make your application da-
tabase-independent – so long as you stick to standard SQL and don’t use
database-specific functionality. This can be useful if you want to prototype
your application on a lightweight database and move it to a more robust
database later at production, however I feel that it’s typically better to
match your development environment to the production environment as
much as possible. I’ve also seen very few instances where an application
has been migrated to another database except in extreme legacy systems.

DB4O
 With DB4O, you could say there’s a vendor tie-in, but you can always
add Hibernate annotations to your POJOs and run a script to read in your
data from DB4O and save it to your Hibernate persistence layer.

Caché/Jalapeño
 Caché stores objects using sparse arrays, so it’s not your typical relational

29May 2007JDJ.SYS-CON.com

database. However, you can access data as objects or via Caché’s SQL projection
– which makes it look and act like a relational database (to your JDBC applications
at any rate). Interestingly enough, you can also use Jalapeño to export your Caché
class schema to a DDL file that can be imported into a relational database. You
can then use Hibernate to map your objects to the new relational schema – or
continue to use the Jalapeño Object Manager to interact with the new data source.
The Object Manager automatically uses object persistence methods (Open, Save,
New, Delete) when accessing Caché, and relational persistence methods (Select,
Update, Insert, Delete) when it’s configured to connect to a relational database.

Conclusion
 While you can eliminate mapping your objects to relational tables altogether,
using DB4O or Caché, for example, it appears that some work must always be
done if you want to take advantage of advanced database/datastore features
such as enforcing referential integrity and uniqueness.
 Hibernate has come a long way since it was first released. It has a bewildering
number of options for configuring your object persistence mappings and behav-
ior – as well as great tools to make it if not painless then at least not so painful.
 If you want to quickly persist your objects for a small project and you can
manage uniqueness and referential integrity within your application code - look
no further than DB4O. It just doesn’t get any easier.
 The Caché/Jalapeño combination provides a compelling option for quickly
persisting your Java objects with a minimum of effort while providing excellent
control over database-specific functionality.
 While you were busy programming your last tour de force, your peers and
technology vendors have been busy building tools that enable you to do things
that were previously impossible. You owe it to yourself and to your clients
to pause once in a while and survey the state-of-the-art in databases and

development tools to see where new entries can save you time and effort. For
a comparison of features, go to the online version of this article at http://jdj.
sys-con.com.

Resources
• Comparative Study of Persistence Mechanisms for the Java Platform.

http://research.sun.com/techrep/2004/abstract-136.html
• Mark Weisfeld. The Object-Oriented Thought Process. SAMS Publishing.

This is an excellent analysis of what object-oriented design is all about
and how it compares to procedural programming.

Java Serialization:
• Discover the secrets of the Java Serialization API. http://java.sun.com/

developer/technicalArticles/Programming/serialization/
• Bruce Eckell. Thinking in Java. http://www.mindview.net/Books/TIJ/

Hibernate:
• Web site: http://www.hibernate.org/
• Dave Minter and Jeff Linwood. Beginning Hibernate. Apress. 2006.

InterSystems’ Caché Database:
• Web site: http://www.intersystems.com/Cache
• Jalapeño: http://www.intersystems.com/Jalapeno

DB4O:
• Web site: http://www.db4o.com/
• Simple Object Persistence with the db4o Object Database. http://
 www.onjava.com/pub/a/onjava/2004/12/01/db4o.html

JDJ.SYS-CON.com30 May 2007

he WebRenderer Swing Edition
changes the face of Java Swing
applications and the render-
ing of Web content within Java.

Before we jump into that, let’s take a
look back at Web content display in
Java desktop applications including
the generational changes and Java’s
very own “Browser Wars.”
 The date is August 26, 1997. The
Netscape Corporation announces1 that
they are working with Sun Microsystems
to release “a 100% Pure Java version of
Netscape Navigator client software by
1998.” The Java community rejoices.
Along comes 1998 and nothing but
silence. Was it just me who missed the
release of Netscape Navigator Java Edi-
tion? Who pulled the plug and why? A
decent Java browser SDK back in 1998
would have gone a long way toward
popularizing Java on the desktop.
Instead, we’re left with more than a few
beers short of a six-pack.
 Java on the desktop has always been
somewhat lagging. First, Swing was
plagued by a bad image surrounding
speed. Then there was poor platform
L&Fs, bugs in essential components
such as the File chooser, etc., and now
in the year 2007 Swing still lacks pure
Swing industrial-strength Web content
rendering. This fact alone has driven
many Java rich-client developers to
either seek out third-party compo-
nents or change the direction of their
desktop application development and
write their rich client applications in
an alternative language that supports
standards-compliant rendering, or
(and this is the worst) utilize non-
standards-compliant Java browser
SDKs and craft the Web content input
around the failings of the Web content
rendering engine. This paradox was
always confusing. Java Web content
rendering engines were written to

display Web content, but in the end
the Web content had to be modified
to work around the failings of the Java
browser SDKs. Figure that one out!
 While Web standards have improved
the look and feel of Web sites through
CSS and JavaScript and interactivity has
increased through AJAX, Java enterprise
Web applications have boomed, but
Java still lacks quality Web content ren-
dering for its Swing toolkit. How could
this important detail be omitted in the
decade of the Web boom?
 Through all this mess, over the
last decade a budding community of
ISVs and large software vendors have
taken the challenge with open arms
and developed their own Java browser
SDKs of varying architectures and with
mixed results spawning their very own
“Browser Wars.”

First-Generation Web Content Rendering
 Web content rendering in Java
started life as a clean room, pure-Java
implementation of an HTML parsing
engine and utilized Swing drawing
routines to render the graphics. The
Sun default Java implementation
(JEditorPane) was, and still is, basic
and did not support any standards
outside basic HTML, so various
companies developed “commercial-
strength” pure Java browser SDKs.
These SDKs followed the same para-
digm as the default Java implementa-
tion, but extended this to support
JavaScript and other Web standards.
The key limitation of pure Java brows-
ers is they do not live up to the render-
ing standards delivered by Firefox and
Internet Explorer.
 The sheer scale of Web standards
meant that small private companies
in the Web content rendering space
had to hire small armies to develop
anything that was remotely standards
compliant. Then there were issues
with dynamic content such as JavaS-
cript, and additional Web styles such
as CSS 1 and 2. The task of developing
a pure Java browser was and still is

Inside Look

by Anthony Scotney

Browser Wars and
Swing on the Desktop

T

Anthony Scotney is the

founder and CEO of

JadeLiquid Software. With

Anthony at the helm

JadeLiquid Software has

grown exponentially since

inception and received

several awards in recogni-

tion of its success. He was

awarded the prestigious

2004 Pearcey Award for

individual pioneering

achievement and contribu-

tions to research and

development in informa-

tion technology. In 2005

he was named Tasmanian

Young Achiever of the year.

Anthony studied science at

the University of Tasmania,

majoring in computer

science.

ascotney@jadeliquid.com

Is the WebRenderer Swing Edition a significant development?

 The WebRenderer Swing Edition is a pure Swing Java browser SDK based upon native parsing and layout

of the Mozilla engine (the exact same parsing and layout engine as utilized by Firefox). What does this mean?

It means that now Java Swing applications will have commercial-strength Web content rendering in pure

Swing. Every line, polygon, image, text, and more will be drawn in pure Swing. The WebRenderer Swing

Edition has removed the heavyweight rendering of the native layout and rendering engine. This will provide

Java Swing applications with Swing integration and industry-standard rendering.

 The rendering quality of Mozilla is paired with the lightweight drawing of Swing, including support for

Java Look and Feels (L&F). This means seamless integration into Swing applications with the standards compli-

ance of Mozilla. No longer is there a great divide between Swing and real-world commercial strength Web

content rendering. WebRenderer Swing Edition is the first of the third generation of Java browser SDKs. Not

only is HTML, CSS 1 & 2, JavaScript (including AJAX) supported, but Java applets and third-party plugins such

as Flash are supported. Enterprise technology mash-ups including Java, Web content, AJAX, Flash, and Swing

are now possible in a single Java Swing application.

Third-Generation Web Content Rendering

31May 2007JDJ.SYS-CON.com

monumental. A standards-compliant pure Java browser is
not a commercially viable prospect. The first-generation
Java browsers ended up with a lightweight implementation
that often “broke” on real-world Web content. Due to this
fact, first-generation Java browsers are slowly dying out
with the major vendors withdrawing support, paving the
way for a new wave of Java browser SDKs.

Second-Generation Web Content Rendering
 This first round of Web content rendering engines can be
referred to as first-generation rendering engines. The next
step in the development of Java browser SDKs was brought
to life by JadeLiquid Software, which developed the We-
bRenderer Desktop Edition, a commercial-strength, native-
based Java browser SDK. The release of the first second-
generation, Web content rendering engine occurred back in
2002 with the release of the WebRenderer Desktop Edition.
The development affected the face of Web content display
in Java by bringing the market-leading native browsers
(Mozilla, Internet Explorer, and Safari) through to the Java
environment for use in Java rich client applications. Many
copycat developments, including some from the Java in-
dustry giants, have followed and the trend for Java brows-
ers has headed toward the architecture pioneered through
the WebRenderer Desktop Edition. The key limitation of
second-generation native Java browser SDKs is that they are
heavyweight. Being heavyweight, on many occasions they
don’t play well with the Swing toolkit. While the rendering
is phenomenal and standards compliant, Swing integration
can be somewhat tricky. Standard JFrames, JPanels, etc., are
fine. The integration issues rear their head with JInternal-
Frames, JTabbedPanes, Glasspanes, JMenus, and the like.
The heavyweight–lightweight mixing issue has always creat-
ed issues for Swing. The WebRenderer Desktop Edition pro-
vides a compatibility layer to help with Swing integration
but, by design, lightweight and heavyweight components
don’t mix well together. Despite the integration issues in the
commercial space, the second generation of Java browser
SDKs have proven themselves as the architecture of choice
for commercial grade Web content rendering. Now that you
have the history, where to from here? Well, JadeLiquid, the
developer of the WebRenderer family of products, has just
released a new product that will change the Java browser
SDK space and create the third generation.

The Final Frontier
 Now that the Java “Browser Wars” are moving toward a
conclusion, with the native architecture base winning out
for enterprise desktop applications, it will be interesting
to watch this space and see what companies, such as Sun
Microsystems, do to embrace or “reinvent the wheel” in
the eye of the third-generation Java browser SDK, WebRen-
derer Swing Edition. Sun’s latest attempt at building a Java

browser SDK (the JDIC program) has been flailing with
mixed results. The architecture direction is blatantly wrong
and major issues are a dime a dozen. Through the architec-
ture of JDIC Swing compatibility is limited (see second gen-
eration) and with time the second generation is destined to
end up like the first generation. Word from the Java rumor
mill is that Sun’s JEditorPane is undergoing some tweaking.
Without years of development and a team larger than the
entire J2SE team, this is a losing and some would say point-
less battle. At best some JEditorPane revisions will result in
yet another substandard first-generation browser compo-
nent or at worst a better version of a broken wheel.
 Is WebRenderer Swing Edition the only commercial
strength option for “real-world” Web content support
within Java Swing applications? You decide.

References
• http://web.archive.org/web/20031014110817/http://

java.sun.com/pr/1997/august/pr97826-02.html
• http://www.webrenderer.com

Web content in Java started life as a clean room,
pure-Java implementation of an HTML parsing engine and
utilized Swing drawing routines to render the graphics”

“

��

������������
��������������������
���������������������������
������������������

�����������������
���������������

����������������

����������������
�����������������������������

����������������������

�����������
��������������

�������������

����������

��������

����

�������������������������
�������������������������

�����������������

��
��
���
����������������

���
��
���
��

���
���

�����������������
��������������������������������

��

COPYRIGHT ©2007 SYS-CON MEDIA ALL RIGHTS RESERVED

33May 2007JDJ.SYS-CON.com

���������������������������

����������������������������������

��������������������������������

���������������������������

����������������������������������

�������������

������������������������������
�����������������

���� ����

��

������
����

��������
���������

���������������������������
�������������������������

��������������������
�������������

�����������������������

���� ���������������������������������

�����������������
�����������

����������������
��������������

���������

Advertiser Index

General Conditions: The Publisher reserves the right to refuse any advertising not meeting the standards that are
set to protect the high editorial quality of Java Developer’s Journal. All advertising is subject to approval by the
Publisher. The Publisher assumes no liability for any costs or damages incurred if for any reason the Publisher
fails to publish an advertisement. In no event shall the Publisher be liable for any costs or damages in excess
of the cost of the advertisement as a result of a mistake in the advertisement or for any other reason. The
Advertiser is fully responsible for all financial liability and terms of the contract executed by the agents or agen-
cies who are acting on behalf of the Advertiser. Conditions set in this document (except the rates) are subject
to change by the Publisher without notice. No conditions other than those set forth in this “General Conditions
Document” shall be binding upon the Publisher. Advertisers (and their agencies) are fully responsible for the
content of their advertisements printed in Java Developer’s Journal. Advertisements are to be printed at the
discretion of the Publisher. This discretion includes the positioning of the advertisement, except for “preferred
positions” described in the rate table. Cancellations and changes to advertisements must be made in writing
before the closing date. “Publisher” in this “General Conditions Document” refers to SYS-CON Publications, Inc.

 Advertiser URL Phone Page

This index is provided as an additional service to our readers. The publisher does not assume any liability for errors or omissions.

 Altova www.altova.com 978-816-1600 Cover II

 DiSTI www.simulation.com/jdj 407-206-3390 27

 ESRI www.esri.com/develop 888-288-1277 19

 ILOG www.ilog.com/jdj/ajax 4

 Infragistics www.infragistics.com/jsf 800-231-8588 Cover IV

 InterSystems www.intersystems.com/javaone2007p 7

 Java Developer’s Journal www.jdj.sys-con.com 888-303-5282 33

 JadeLiquid www.webrenderer.com 11

 JavaOne www.java.sun.com/javaone 21

 Jinfonet Software www.jinfonet.com/j 240-477-1000 17

 Northwoods Software Corp. www.nwoods.com 800-434-9820 31

 Perforce Software www.perforce.com 15

 SOA and EOS 2007 Conference & Expo www.soaworld2007.com 201-802-3020 25

 Software FX www.softwarefx.com 561-999-8888 Cover III

 Sun Microsystems www.netbeans.org 9

Virtualization Conference & Expo 2007 www.virtualizationconference.com 201-802-3020 32

 VX30 www.vx30.com 866-661-5699 29

JDJ.SYS-CON.com34 May 2007

very year the process of choosing the
community’s best starts with nomina-
tions in five categories: Member of the
Year, Most Outstanding Spec Lead for

Java Standard Edition/Enterprise Edition,
Most Outstanding Spec Lead for Java Micro
Edition, Most Innovative JSR for Java Stan-
dard Edition/Enterprise Edition, and Most In-
novative JSR for Java Micro Edition. This year
the JCP adds a new one: JCP Participant of the
Year. At the time of writing the JCP Executive
Committees (EC) representatives selected
three to four nominees in each category and
have another 10 days to vote for the winners.
It’s become a tradition to announce them at
the community event the JCP organizes at
JavaOne, which this year will host the fifth
edition of the JCP Annual Awards.

And the Nominees Are!
JCP Member of the Year
 With this award the JCP recognizes the
corporate or individual member who has
made the most significant positive impact
on the community in the past year. When
choosing nominees, the EC members look
at leadership qualities, breadth and depth of
effort put in the community, and innovation
contributions. The nominees in this category
are the Apache Software Foundation, Nokia,
and Orange France. The Apache Software
Foundation will present at JavaOne on the
topic of The Apache Harmony Project and
will join Sun, Red Hat, the Free Software
Foundation, and Max Planck Institute for
Computer Science on the Java Technology
Libre Panel. As usual, Nokia has a strong pres-
ence at JavaOne, presenting and co-present-
ing in at least 10 technical sessions and BOFs
combined. Orange presents in two technical
sessions, one of which is about “Tackling Java
ME Device Fragmentation: Orange and Sun
Collaboration.”

JCP Participant of the Year, New Category in 2007
 This award rewards the corporate or
individual member participant (individual
name) who has made the most significant
positive impact on the community in the past
year. Leadership, technical contribution, and
innovation are some of the qualities that EC
members look for in voting for this award.

The nominees are Wayne Carr, Jean-Marie
Dautelle, and Doug Lea. For brief bios of the
three nominees go to http://jcp.org/en/
participation/committee and search for
their names under the respective Executive
Committees. You can also catch Jean Marie
Dautelle at JavaOne on the panel of the Java
ME BOF-5697, Take the Guessing out of the
Java Platform, Micro Edition (Java ME) Fu-
ture: Latest JSRs Predict Exciting Technology
Developments Ahead.

Most Outstanding Spec Lead for Java SE/EE
 This award goes to the person who has
brought together such qualities as techni-
cal savvy, the ability to build consensus in
spite of diverse corporate goals, and focus on
efficiency and execution. The nominees this
year are Alan Bateman (JSR 203), Nasir Khan
(JSR 289), and David Nuescheler (JSR 283). If
you want to listen to Alan Bateman at Java-
One, make note of his BOF Troubleshooting
and Diagnostic Utilities in JDK Release 5 and
6. To find out more about the work these
Spec Leads put into developing these JSRs, go
to the public pages of these projects at http://
jcp.org, and do a search for the JSR number.

Most Outstanding Spec Lead for Java ME
 Similarly, the EC members look for the
same strong qualities when they choose
nominees for this category. This year the
nominees for the most outstanding Spec Lead
for Java ME are Shai Gotlib (JSR 190), Mike
Milikich (JSR 271), and Antti Rantalahti and
Ivan Wong (JSR 272). In September 2006 Shai
Gotlib interviewed with Artima Developer; to

check out what he had to say about the API
he’s driving, go to http://www.artima.com/le-
java/articles/mobile_events.html.

Most Innovative JSR for Java SE/EE
 Innovation is key to the success of the
JCP program and helps ensure that the JCP
remains a fresh and vibrant community.
This award recognizes the Spec Lead and
Expert Group that have introduced the most
innovative new JSR for the Java SE or Java EE
communities in the past year. The candidates
put forward are JSR 299, Web Beans; JSR
308, Annotations on Java Types; and JSR 309,
Media Server Control API. If you’re looking
for a presentation on JSR 299, Web Beans,
bookmark the technical session TS-4089, Web
Beans Update, given by Gavin King, JBoss,
and Bob Lee, Google. For more informa-
tion on the JSRs I recommend you go to the
respective public pages at http://jcp.org.

Most Innovative JSR for Java ME
 A similar award is offered for Java ME for
which innovation is as important as for Java
SE/EE. The JSRs nominated by the EC mem-
bers this year are JSR 298, Telematics API for
Java ME; JSR 300, DRM API for Java ME; and
JSR 307, Network Mobility and Mobile Data
API.

 The grand finale is scheduled to take place
at the community event at JavaOne organized
by the JCP on May 9. The winners will be
officially announced at the Fifth JCP Annual
Awards ceremony. Don’t miss this community
event that the JCP brings to JavaOne every
year. If you can’t make it to the ceremony,
check the next JSR column; I’ll be introduc-
ing the winners to you. If you are interested
in more JCP events at JavaOne, check out the
JCP Events Calendar at http://jcp.org/en/
whatsnew/calendar.
 For members of the press and analysts
the JCP organizes a round table on Wednes-
day, May 9, The Java Standards Advantage,
from 3:15 p.m. – 4:15 p.m. at the Moscone
Conference Center, Room 123. Participants
include some of the nominees for the Fifth
JCP Annual Awards. (journalists or analysts,
send your request for round table details to
corina@jcp.org).

JSR Watch

Onno Kluyt

Getting Ready
to Choose the Year’s Best

E

Onno Kluyt is the

director of the

JCP Program at

Sun Microsystems

and Chair of the JCP.

onno@jcp.org

C
opyright 1996-2007 Infragistics, Inc. A

ll rights reserved. Infragistics, N
etA

dvantage and the Infragistics logo are registered
tradem

arks of Infragistics, Inc. W
ebC

hart and W
ebG

rid are tradem
arks of Infragistics, Inc. A

ll other tradem
arks or registered

tradem
arks are the respective property of their ow

ners.

WebCharting – Add high impact 2D/3D visualizations with over 70 different
chart types and views

Improved Data Reporting – Easily export data within a grid to any application
that supports the import of CSV such as spreadsheets and databases

Application Performance – Leverage our AJAX framework to turbo-charge
your Web applications

Accessibility – Support of US Code Section 508 across all Infragistics controls

NetAdvantage® for JSF
2007 Volume 1

Consistent Multi-Platform User Experience

learn more: infragistics.com/jsf

WebChart™ - 3D Overlay Donut Chart

WebGrid™ Export to CSV Format

Infragistics Sales - 800 231 8588

Infragistics Europe Sales - +44 (0) 800 298 9055

grids scheduling charting toolbars navigation menus listbars trees tabs explorer bars editors

WINDOWS® FORMS ASP.NET WPF JSF

NAforJSF_07vol1_JDJ_single-May.qxp 4/19/2007 12:04 PM Page 1

